Bedienungsanleitung Shodex Asahipak ES-502C 7C

(Bitte lesen Sie dieses Handbuch sorgfältig durch, um die beste und gleichbleibende Leistung der Säule über einen längeren Zeitraum sicherzustellen)

Wichtige Hinweise zur Handhabung

Warnung!

- · Bitte lesen Sie das Sicherheitsdatenblatt (SDB) der Reagenzien und Lösungsmittel, die mit der Säule verwendet werden, und machen Sie sich mit ihrer ordnungsgemäßen Handhabung vertraut, um mögliche Gesundheitsgefahren oder Todesfälle zu verhindern.
- · Bitte tragen Sie beim Umgang mit organischen Lösungsmitteln sowie sauren und alkalischen Reagenzien eine geeignete persönliche Schutzausrüstung wie Schutzbrille und Handschuhe. Vermeiden Sie jeden direkten Körperkontakt, um Verletzungen durch Chemikalien zu verhindern.

Vor Verwendung der Säule

- (1) Bitte überprüfen Sie die Verpackung und die Außenseite der Säule visuell auf eventuelle Schäden.
- (2) Bitte überprüfen Sie den Produktnamen und die Seriennummer (Serial no. oder S/N), die auf der Säulenverpackung und dem Klebeetikett auf dem Säulenkörper angegeben sind.
- (3) Bitte laden Sie das Analysenzertifikat (CoA) für das erworbene Produkt herunter. Dieses können Sie auf der Website von Shodex (https://www.shodex.com/download/) herunterladen. Dabei werden sie aufgefordert, die Seriennummer einzugeben.

1. Einleitung

Vielen Dank, dass Sie sich für dieses Shodex-Produkt entschieden haben. Bei Shodex Asahipak ES-502C 7C handelt es sich um eine schwache Kationenaustauschsäule, die mit hydrophilem polymerbasiertem Gel gefüllt ist, das mit einer Carboxymethylgruppe modifiziert wurde. Diese Säule eignet sich optimal für die Analyse verschiedener Proteine, Peptide und Bestandteile von Nukleinsäuren, da sie eine geringe Adsorptionstendenz zu hydrophoben Verbindungen aufweist. Das Gel auf Polymerbasis ermöglicht den Einsatz in einem weiten pH-Bereich.

2. Column Components

Weitere Informationen finden Sie auf der Website von Shodex: https://www.shodex.com/en/da/07.html

3. Spezifikationen der Säule

Produktcode	Produktname	Größe der Säule (mm)		Partikel- größe	Theoretische Plattennummer	lonenaustauschkapazität
		i.D.	Länge	(µm)	(je Säule)	(meq/g)
F7640001	Asahipak ES-502C 7C	7,5	100	9	≥ 3.300	0,55

Basismaterial : Kugelförmige poröse Teilchen aus Polyvinylalkohol, modifiziert mit

Carboxymethylgruppe

Säulengehäuse : SUS-316

Schraubentyp: : Innengewinde-Typ-Nr.10-32 UNF Versandlösungsmittel: 0,1 M Natriumphosphat-Puffer (pH 4,4)

4. Gebrauchsbedingungen

Produktname	Durchflus	ss (ml/min)	Maximaler Druck	pH Bereich	Temperaturbereich (°C)
riodaktianis	Empfohlen	Maximum	(MPa je Säule)		
Asahipak ES-502C 7C	1,0	1,5	1,2	2 - 12	10 - 50

Verwendbare Lösungsmittel sind unten aufgeführt.

(1) Die üblichen Elutionsmittel sind Puffer und wässrige Salzlösungen wie Natriumchlorid, Kaliumchlorid, Natriumsulfat und Kaliumsulfat. Salze können ebenfalls zu den Puffern hinzugefügt werden. Die Empfehlungsbereiche für die Gesamtsalzkonzentrationen liegen zwischen 20 – 600 mM. Wählen Sie einen Puffer mit negativem Ladungsion, der eine große Pufferkapazität im gewünschten pH-Wert aufweist. Eine Liste verwendbarer Puffer sind unten aufgeführt.

pH Bereich	Puffer
3,8 - 4,3	Natriumformiat
4,3 - 4,8	Natriumsuccinat
4,8 - 5,2	Natriumacetat
5,0 - 6,0	Natriummalonat
5,5 - 7,0	2-(N-Morpholino)ethansulfonsäure (MES)
6,7 - 7,6	Natrium-Phosphat
6,8 - 8,2	2-[4-(2-Hydroxyethyl)-1-piperazinyl]-Ethansulfonsäure (HEPES)
7,7 - 9,1	N,N-Bis(2-hydroxyethyl)glycin (BICINE)
8,6 - 10,0	2-(Cyclohexylamino)ethansulfonsäure (CHES)

(2) Es kann eine Mischung aus Puffer (oder wässrige Salzlösung) und Acetonitril oder Puffer (oder wässrige Salzlösung) und Methanol in einem beliebigen Verhältnis verwendet werden. Es können bis zu 100 % Acetonitril und Methanol verwendet werden.

Achtung!

- Verwenden Sie die Säule innerhalb der oben angegebenen Bereiche für Durchflussrate,
 Druck und Temperatur. Die Verwendung der Säule außerhalb des angegebenen Bereichs kann die Säule beschädigen und ihre Leistung beeinträchtigen.
- · Verwenden Sie nicht 100 % Wasser, da dies die Säule beschädigen kann.
- · Bei der Verwendung eines Gemischs aus Puffer (oder wässriger Salzlösung) und organischem Lösungsmittel ist darauf zu achten, dass es nicht zu einer Ausfällung des Salzes kommt.
- · Wenn Sie stark ätzende Salze wie Natriumchlorid verwenden, waschen Sie die Salze am Ende der Analyse aus. Anderenfalls können die Metallteile der Geräte und/oder die Säulen rosten.
- Der Säulendruck wird von der Zusammensetzung des Elutionsmittels, der Durchflussrate und der Säulentemperatur beeinflusst. Wenn Sie die Zusammensetzung des Elutionsmittels ändern, passen Sie die Durchflussrate und die Säulentemperatur so an, dass der Säulendruck unter dem verwendbaren Maximaldruck bleibt.

5. Vorbereitung des Elutionsmittels

- (1) Entgasen Sie das Elutionsmittel vollständig, um die Bildung von Luftblasen zu verhindern.
- (2) Das Vorhandensein kleiner Ablagerungen oder unlöslicher Substanzen kann zu einer Verschlechterung der Säule führen und/oder werden diese auf den Chromatogrammen als Störgeräusche abgebildet. Filtern Sie das Elutionsmittel mit einem 0,45-µm-Einwegfilter, um ein solches Problem zu verhindern.

Achtung!

- · Verwenden Sie nach Möglichkeit organische Lösungsmittel in HPLC-Qualität. Lösungsmittel, die sich seit längerer Zeit in einer geöffneten Flasche befinden, sollten nicht verwendet werden. Es wird empfohlen, organische Lösungsmittel von garantierter Qualität zu verwenden, die problemlos für eine HPLC eingesetzt werden können. Werden organische Lösungsmittel unterschiedlicher Qualität zusammen verwendet, muss vor der Verwendung sichergestellt sein, dass sie sich allesamt für die Analyse eignen. Der Inhalt kann sich verändert haben, Feuchtigkeit aufgenommen haben oder kontaminiert worden sein.
- · Verwenden Sie stets frisch zubereitete Lösungsmittel. Über einen längeren Zeitraum gelagerte Lösungsmittel können ihre Zusammensetzung verändert haben und dadurch das Elutionsmuster beeinflussen und/oder die Säule beschädigen.

Hinweis

· Die Verwendung eines Online-Entgasers wird empfohlen.

6. Vorbereitung der Probe

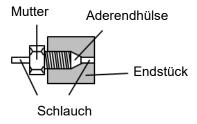
- (1) Wenn möglich, verwenden Sie das Elutionsmittel für die Analyse, um Proben aufzulösen oder zu verdünnen. Sollte dies nicht möglich sein, verwenden Sie ein Lösungsmittel, dessen Zusammensetzung der des Elutionsmittels so nahe wie möglich kommt, dabei die Probe jedoch vollständig auflöst oder verdünnt. Bei einer Gradientenelution empfiehlt es sich, das ursprüngliche Elutionsmittel zur Vorbereitung der Probe zu verwenden.
- (2) Filtern Sie die Probenlösung mit einem 0,45-µm-Einwegfilter, um zu verhindern, dass die Säule verstopft oder beschädigt wird.
- (3) Das empfohlene Injektionsvolumen der Probe beträgt weniger als 100 µl je Säule.

Achtung!

- · Wird eine Probe in einem anderen Lösungsmittel als dem Elutionsmittel gelöst und enthält die Probenmatrix Bestandteile, die sich im Elutionsmittel nicht vollständig auflösen, können sich Ausfällungen bilden, welche die Säule verstopfen.
- · Sind die Konzentration oder das Injektionsvolumen der Probe größer als sie sollten, wird möglicherweise nicht die volle Säulenleistung erreicht. Dies kann zu abnormalen Peakformen, schlechten Trennungen und/oder geringer Reproduzierbarkeit führen. In solchen Fällen passen Sie bitte die Probenkonzentration und/oder das Injektionsvolumen an.

7. Nutzungsverfahren der Säule

7.1 Vorbereitung des HPLC-Systems


Reinigen Sie vor der Installation der Säule das gesamte LC-System, einschließlich aller Durchflussleitungen und des Probenkreislaufs, indem Sie das Ventil umschalten und anschließend die Waschlösung durch das zu verwendende Elutionsmittel ersetzen. Falls das gewünschte neue Elutionsmittel eine geringe Mischbarkeit/Löslichkeit gegenüber dem Elutionsmittel der vorherigen Analyse aufweist, verwenden Sie zunächst ein Elutionsmittel, das gegenüber beiden Elutionsmitteln mischbar/löslich ist. Ersetzen Sie es anschließend durch das gewünschte Elutionsmittel.

Achtung!


- · Ist das im System verbliebene Elutionsmittel nicht mit der zu verwendenden Säule kompatibel, kann die Säule dadurch beschädigt werden.
- Eine drastische Veränderung der Zusammensetzung des Elutionsmittels kann dazu führen, dass im System adsorbierte Substanzen entfernt werden, wodurch sie in die Säule gelangen und diese beschädigen können.

7.2 Column Installation

- (1) Schließen Sie die Säule an das HPLC-System an, indem Sie dem "Flussrichtungspfeil" (→) folgen, der auf dem Klebeetikett der Säule angegeben ist.
- (2) Achten Sie darauf, den Schlauch bis zum Ende einzuführen und mit der Überwurfmutter zu sichern. Dabei ist wichtig, dass im Endstück zwischen Schlauch und Säule kein Zwischenraum besteht. Anderenfalls kann die Probe auslaufen und zu breiten Peaks führen.

(3) Stellen Sie die anfängliche Durchflussrate auf weniger als 0,5 ml/min ein und starten Sie das System. Wird die Säule bei einer erhöhten Temperatur verwendet, halten Sie die Durchflussrate niedrig, bis die Temperatur der Säule die eingestellte Temperatur erreicht hat, und erhöhen Sie die Durchflussrate anschließend allmählich auf den gewünschten Wert.

· Stellen Sie sicher, dass kein Lösungsmittel austritt. Anderenfalls können Elektroschläge, Rost und/oder chemischen Verletzungen auftreten.

Achtung!

- · Achten Sie bei der Installation der Säule darauf, dass keine Luftblasen hineingelangen. Luftblasen können die Säule beschädigen.
- · Wenn Sie das System neu starten, nachdem Sie die Säule installiert oder den Durchfluss des Elutionsmittels gestoppt haben, tun sie weniger als 0,5 ml/min. Ein zu schneller Druckanstieg kann die Säule beschädigen.
- · Wurde die Säule während der Analyse erhitzt, ist die Durchflussrate am Ende der Analyse auf weniger als 0,5 mL/min zu senken. Schalten Sie dann den Säulenofen aus und lassen Sie die Temperatur der Säule auf Raumtemperatur zurückgehen, bevor Sie die Pumpe abschalten. Damit soll verhindert werden, dass ein leerer Raum in der Säule entsteht, der die Säule beschädigt. Wenn die Pumpe gestoppt wird, während das Elutionsmittel in der Säule noch heiß ist, verringert sich das Volumen des Elutionsmittels und es entsteht ein Leerraum, wenn die Temperatur des Elutionsmittels sinkt.

Hinweis

· Es wird das Einstellen des Pumpenbegrenzers empfohlen, um die Überschreitung des maximalen Drucks zu vermeiden.

7.3 Austausch von Lösungsmitteln

Stellen Sie beim Austausch des Lösungsmittels auf starten Sie das System bei weniger als 0,5 ml/min. Die Empfehlung für das einzuleitende Lösungsmittelvolumen für jeden Schritt beträgt das 3- bis 5-fache des Säulenvolumens.

- (1) Überprüfen Sie die Mischbarkeit/Löslichkeit des gewünschten neuen Lösungsmittels gegenüber dem aktuell in der Säule befindlichen Lösungsmittel.
- (2) Wenn Sie es durch ein Lösungsmittel mit geringerer Mischbarkeit/Löslichkeit gegenüber dem aktuellen Lösungsmittel ersetzen, verwenden Sie zunächst ein Lösungsmittel, das gegenüber beiden (dem neuen und dem aktuellen) Elutionsmittel mischbar/löslich ist. Ersetzen Sie es anschließend durch das neue Lösungsmittel.
- (3) Bei Verwendung einer Gradientenmethode können Änderungen in der Zusammensetzung des Elutionsmittels den Gegendruck der Säule erhöhen. Passen Sie die Durchflussrate und die Säulentemperatur so an, dass der Gegendruck der Säule während der gesamten Analyse unter dem verwendbaren Maximaldruck bleibt.

7.4 Reinigung der Säule

Probleme mit Peakformen, Änderungen der Elutionszeit oder ein erhöhter Säulendruck werden häufig durch die Ablagerung unlöslicher oder adsorbierender Komponenten aus der Probe/dem Durchfluss in der Säule verursacht. Diese Probleme können durch eine Reinigung der Säule behoben werden.

Falls mehrere Analysesäulen zusammen verwendet werden, sind sie getrennt zu reinigen. Lassen Sie die Waschlösung beim Reinigen der Säule aus dem Säulenauslass direkt in den Abfallbehälter fließen und nicht durch den Detektor laufen.

Sollte sich die Säulenleistung nach der Reinigung nicht verbessert (erholt) haben, tauschen Sie die Säule bitte durch eine neue aus.

<Reinigungsmethode>

- (1) Unlösliche Komponenten, die den Einlass der Säule blockieren, können durch Umkehrung der Durchflussrichtung entfernt werden, d. h. durch Einleiten des Elutionsmittels vom Säulenauslass her, wobei die Durchflussrate weniger als die Hälfte der empfohlenen Durchflussrate betragen sollte.
- (2) Befolgen Sie die folgenden Reinigungsschritte für adsorbierende Komponenten. Für eine effiziente Reinigung kehren Sie die Flussrichtung um. Stellen Sie die Flussrate auf 0,5 ml/min ein.

Methode 1: Adsorption ionischer Verbindungen

Führen Sie ein Elutionsmittel mit höherer Salzkonzentration ein oder 0,1 M wässrige Essigsäurelösung.

Methode 2: Adsorption von hydrophoben Verbindungen

Führen Sie eine Mischung aus Lösungsmittel ein, das 50 mM Elutionsmittel (Puffer- oder wässrige Salzlösung) sowie 50 % (v/v) Acetonitril oder Methanol enthält.

Achtung!

· Lassen Sie das Innere der Säule niemals austrocknen. Anderenfalls kann die Säule beschädigt werden.

8. Lagerung der Säule

Entfernen Sie die Säule aus dem System, nachdem Sie das Lösungsmittel in der Säule durch das Versandlösungsmittel ersetzt haben. Ziehen Sie die Endkappen fest an und lagern Sie die Säule an einem Ort mit stabiler Temperatur (hierbei empfiehlt sich ein kühler und dunkler Raum). In Abschnitt 7.3 "Austausch von Lösungsmitteln" erfahren Sie, wie das Elutionsmittel ausgetauscht werden kann.

Achtung!

· Lassen Sie das Innere der Säule niemals austrocknen. Anderenfalls kann die Säule beschädigt werden.

9. Column Inspection

Bitte beachten Sie die im Analysezertifikat beschriebene Prüfmethode. Bei Shodex erfolgt die Berechnung der Plattenzahl anhand der "Halbwertsbreite" und die Berechnung der Peak-Symmetrie mithilfe des "Asymmetrie-Faktors" (Fas).

Weitere Informationen finden Sie auf der Website von Shodex: https://www.shodex.com/en/da/07.html

Attention!

Die Werte für Plattenzahl und Fas unterscheiden sich je nach verwendeten Proben und/oder Analysebedingungen erheblich. Um den anfänglichen Säulenzustand zu überprüfen, verwenden Sie bitte die selbe Probe unter den im Analysezertifikat genannten Analysebedingungen.

10. Zusätzliche Warnhinweise

- (1) Die Endstücke dürfen nicht entfernt werden.
- (2) Es darf keine Gewalt auf die Säule ausgeübt werden. Lassen Sie die Säule nicht fallen und schlagen Sie sie nicht gegen eine harte Oberfläche.
- (3) Bitte befolgen Sie die von den örtlichen Vorschriften vorgeschriebene Methode zur Abfallentsorgung.

Auf der Website von Shodex (https://www.shodex.com/) finden Sie Einzelheiten zu den Produkten und deren Anwendung.

Falls Sie weitere Unterstützung benötigen, wenden Sie sich an den Händler, von dem Sie die Säule erworben haben, oder an Ihre regionale Shodex-Supportstelle (https://www.shodex.com/en/support_office/list).